

DDNの最新のLustreへの取り組みについて

DataDirect Networks, Inc.

Shuichi Ihara

2017/11/02

DDN's recent Lustre activities

- **▶ DDN** has been contributing Lustre community
 - DDN is No.2 company of Lustre cods contribution.
 - DDN developed many new Lustre features and merged them into upstream Lustre.
- ▶ Presenting at Lustre conference every year. Four presentations were selected at LAD17!
 - Lustre on ARM servers
 - PCC(Lustre Persistent Client Cache) LU-10092
 - Lustre Audit with Changelogs LU-9727
 - Lustre/Idiskfs metadata performance boost LU-9796

Other activities

- Lustre QoS (Corroboration work with University of Mainz)
 - Selected paper at SC17 (Tuesday, November 14th11:30am 12pm)
- Data Archive Solution
- Lustre Integrated Policy Engine
- Lustre-ZFS
- ... others

3

Lustre on ARM Servers

```
Continued per project of the continued o
```


The Cavium ThunderX Architecture

▶ SoC architecture

ISA: ARMV8

root@s167:/proc# lscpu

Architecture: aarch64
Byte Order: Little

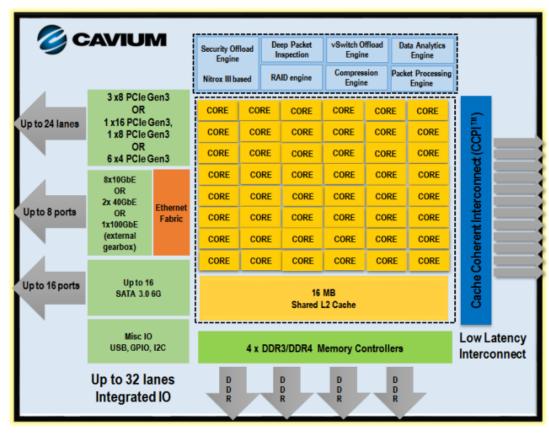
Endian

CPU(s): 96

On-line CPU(s) list: 0-95

Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2

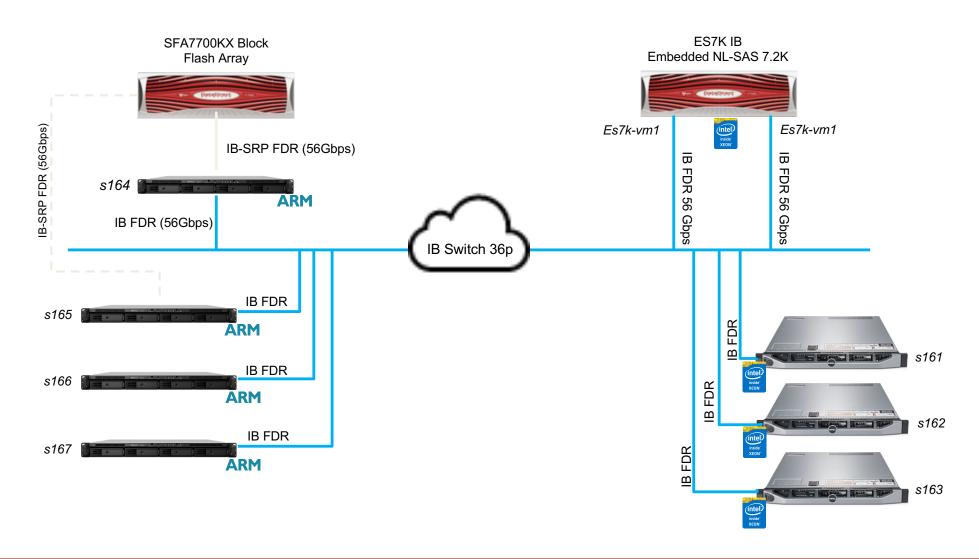
L1d cache: 32K


L1i cache: 78KL2

cache: 16384K

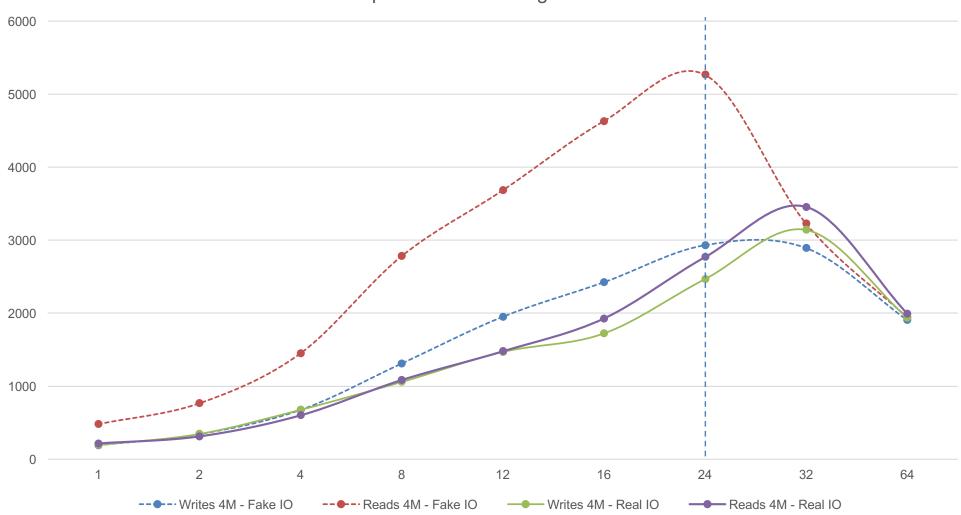
NUMA node0 CPU(s): 0-47

NUMA node1 CPU(s): 48-95

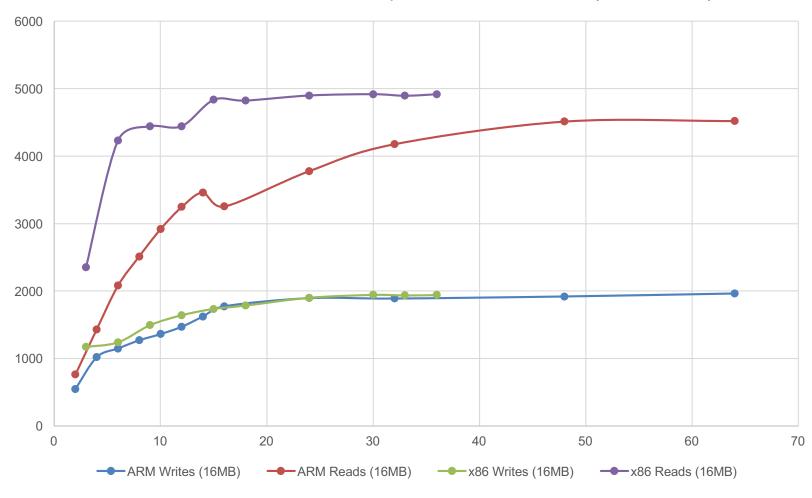


DDN Goals evaluating ARM

- Understand if it is a viable option for mid/long term future products
- Understand what's the effort necessary to make Lustre running optimally on ARM (client and server-side)
- Understand how Lustre and general I/O behaves on ARM SoC architecture
- **▶** Contribute to the community


Test Environment used for the study

IOR Single Client Performance – Multiple Threads


IOR Single Client Performance - 4MB RPCs - REGULAR vs FAKE IO /mnt/arm/bin/ior.arm.mvapich -a POSIX -b 1g -r -w -F -B -t 4m -o /mnt/arm/file.out

ARM and x86 Clients comparison IOR, multiple clients - Sequential

ARM and x86 Clients - IOR Sequential Reads / Writes (ARM Server)

9

PCC(Lustre Persistent Client Cache)

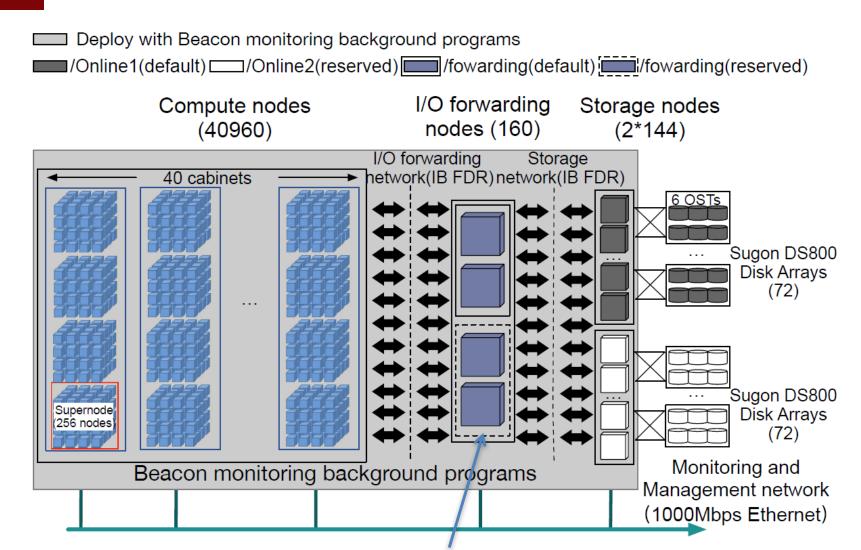
NSCC-Wuxi and the Sunway Machine Family

Sunway-I:

- CMA service, 1998
- commercial chip
- 0.384 Tflops
- 48th of TOP500

Sunway BlueLight:

- NSCC-Jinan, 2011
- 16-core processor
- 1 Pflops
- 14th of TOP500

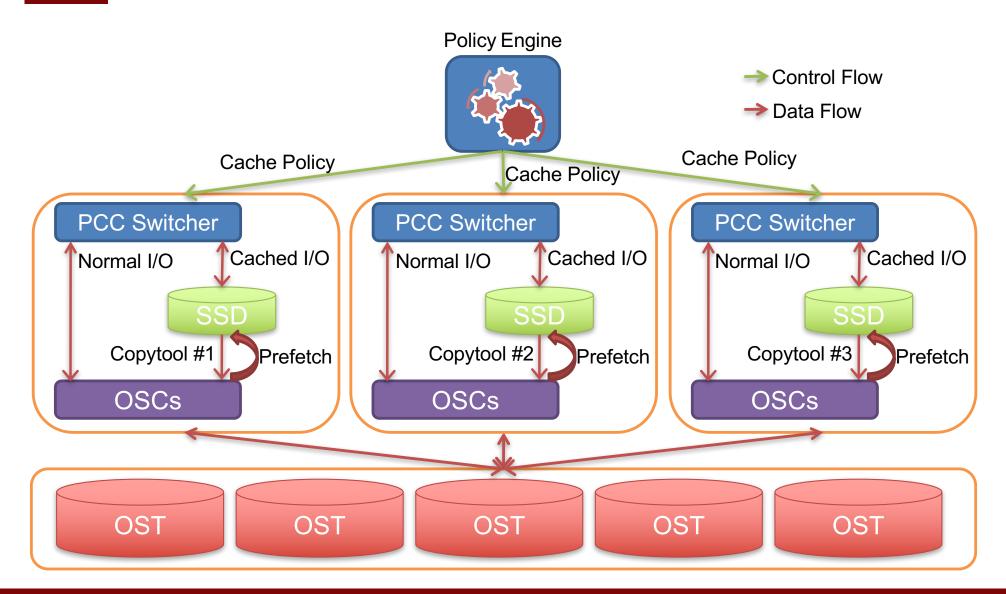

Sunway TaihuLight:

- NSCC-Wuxi, 2016
- 260-core processor
- 125 Pflops
- 1st of TOP500

PCC project is collaborated by NSCC-Wuxi and DDN

I/O Architecture of Sunway TaihuLight

Cache on I/O forwarding nodes (Lustre clients) should be helpful



Why SSD cache on Lustre client?

- Less overhead visible for applications
 - No network latency
 - No LDLM lock and other Lustre overhead
- ► Easier to be optimized for the best performance
 - I/O stack is much simpler
 - No interference I/Os from other clients
- ▶ Relatively easier than server side implementations
 - Write support for SSD cache on server side is very difficult
 - Problems for write cache on server side:
 - Visibility when failover happens
 - Consistency when corruption happens
- Less requirement on hardware
 - Any kind of SSD can be used as the cache device
- Reduces the pressure of OSTs
 - Small or random I/Os are regularized to big sequential I/Os
 - Temporary files do not need to be flushed to OSTs

Architecture of PCC

Limitations

Not all applications are able to be accelerated by PCC

- Locality requirements of application I/Os
 - Applications shall not access the cached file through multiple clients
 - But no inconsistency will happen even the application writes the cached file on a remote client
- Capacity of each local cache is limited
 - Size of a cached file is limited to the available space of the local cache
 - The total cached data on a single client is limited

Files can not be partly cached

- Partial cache can be implemented if HSM supports partial archive/restore
- ► The total PCC clients are limited to 32 Today
 - Only 32 different archive numbers are supported by Lustre
 - This upper limitation can be raised in the future

15

Lustre Audit with Changelogs

Need for audit in Lustre

- Support of rich security features:
 - authentication with Kerberos
 - mandatory access control with SELinux
 - isolation
 - etc.
- ⇒ Audit as a proof of security in place
- ► Lustre outside of traditional HPC field
- ▶ e.g. Life science
 - data privacy is crucial
- ⇒ Audit as a regulation compliance

Audit with SELinux


Pros	Cons
integrated logging and auditing facilityproven	 on client side need to consolidate

Audit with Changelogs

Pros	Cons
integrated in Lustrecentralizedtransactional	 lacks some info

Audit with Changelogs

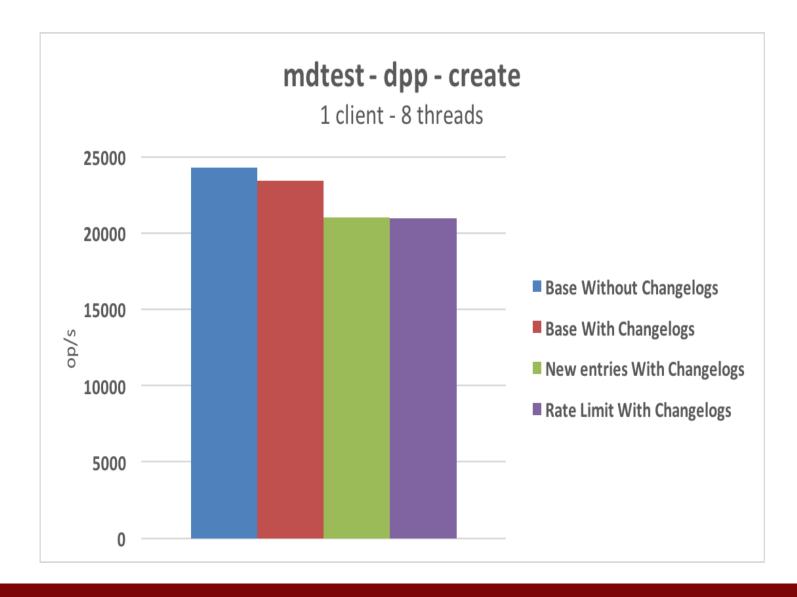
- Lustre activity as seen by MDS
 - file system namespace
 - file metadata
- **▶** Store in Changelog records
 - internal Lustre files
- Read from audit nodes

```
    dedicated clients
```

```
5 01CREAT 15:44:32.385864793 2017.07.18 0x0 t=[0x200000402:0x3:0x0] ef=0x1 p=[0x200000402:0x2:0x0] fileA
```


Lustre needs for proper audit

- Identify subject of action
 - uid/gid
 - NID
- Record all actions
 - open
 - close
 - xattr
 - denied accesses


Audit with Changelogs: impact study

► Changelogs space consumption evaluation

	# changelog entries	changelog size	
After 10 000 files created	30000	3755824	
After 10 000 files read	50000	6096448	
After 10 000 files removed	60000	7461440	ı M D

Audit with Changelogs: impact study

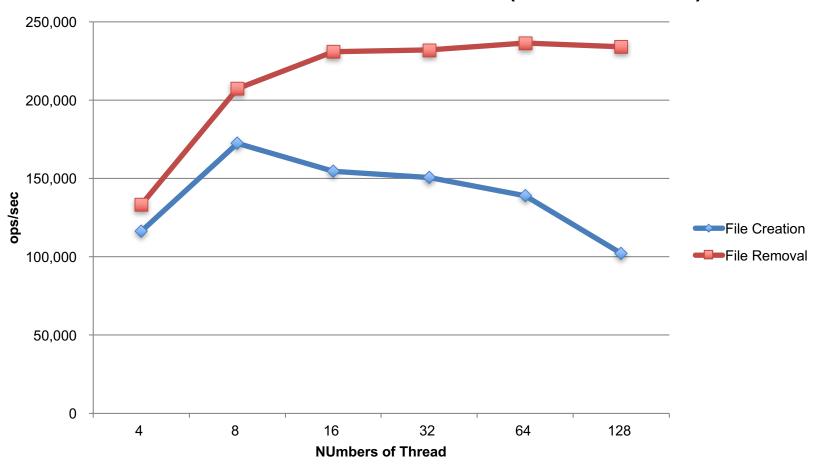
23

Lustre Metadata Performance improvement

Why is metadata performance important?

► Lustre is general purpose filesystem for Big data

- 1 Million files per job are quite common with life science application
- Al/Machine learning type of workload requires small file access with low latency. Metadata performance is one of key factors of it.
- Lustre metadata performance has been performing well.


Vertical and Horizontal scale

- 28 (and 32) CPU cores/socket is available Today.
- DNE helps Horizontal scale out Metadata, but needs to understand your single MDS metadata performance first.

MDS-Survey RHEL7.3/Lustre-2.10/ldiskfs

MDS-Survey(File Creation and Unlink) RHEL7.3/Lustre-2.10.1RC/Idiskfs (Quota Enabled)

A problem on File creation under concurrency

- ► Profiled with perf-tools during mdtest to Idiskfs/ext4
 - Collected CPU costs for all functions in ext4 and jbd2
 - Found heavy lock contentions on group spinlock

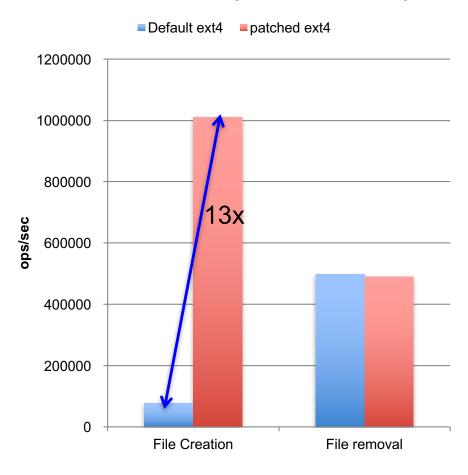
FUNC	TOTAL_TIME(us)	COUNT	AVG(us)
ext4_create	1707443399	1440000	1185.72
_raw_spin_lock	1317641501	180899929	7.28
jbd2journal_start	287821030	1453950	197.96
jbd2_journal_get_write_access	33441470	73077185	0.46
ext4_add_nondir	29435963	1440000	20.44
ext4_add_entry	26015166	1440049	18.07
ext4_dx_add_entry	25729337	1432814	17.96
ext4_mark_inode_dirty	12302433	5774407	2.13

Same contentions exist in the upstream kernel

Fix lock contentions in upstream kernel

► Fixed and merged upstream kernel (4.14)

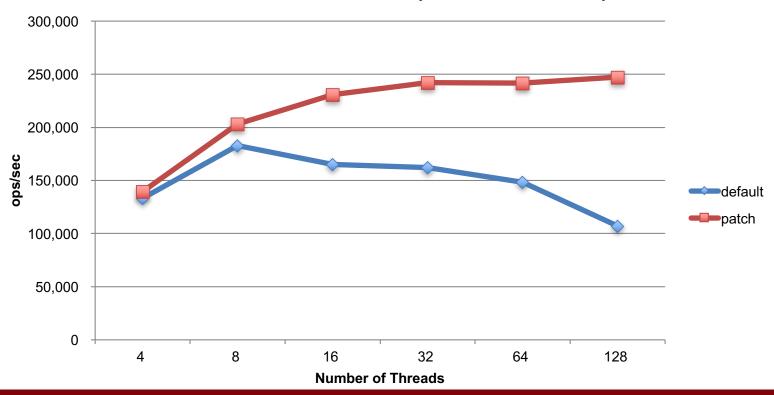
Wang Shilong (2):


ext4: cleanup goto next group

ext4: reduce lock contention in

__ext4_new_inode

- ► 13x performance improvement on file creation
 - Run mdtest to ext4 directly
 - Unique directory operations
 - Quota disabled


mdtest to ext4 (linux-4.13-rc5)

mds-survey on patched ldiskfs

- LU-9796: speedup file creation under heavy concurrency
- Ported patches to Idiskfs for RHEL7 kernel

File Creation :mds-survey on Idiskfs 1 x MDS and 1 x MDT(2 x RAID1 SSD)

Conclusion

- DDN keeps investment to Lustre and contributions to Lustre community
 - DDN Lustre R&D in Japan and China
 - Our most of developed new features comes from valuable customer feedbacks!
- ▶ Deliver adaption and optimizations for new hardware and new technology in advance
 - Performance lab is located in Tokyo
 - Various early testing, performance optimization are ongoing
- Welcome Co-research and Collaboration
 - Not only co-research, but also Alpha/Beta testing and feedback are much appreciate!

